Algebraic Limit Cycles on Quadratic Polynomial Differential Systems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit Cycles for a Generalized Kukles Polynomial Differential Systems

We study the limit cycles of a generalized Kukles polynomial differential systems using the averaging theory of first and second order.

متن کامل

Limit Cycles of Planar Quadratic Differential Equations

Since Hilbert posed the problem of systematically counting and locating lhe limit cycle of polynomial systems on the plane in 1900, much ef Tort has been expended in its investigation. A large body of literature chiefly by Chinese and Soviet authors has addressed this question in the context of differential equations whose field is specified by quadratic polynomials, In this paper we consider t...

متن کامل

On the Number of Limit Cycles for Discontinuous Generalized Liénard Polynomial Differential Systems

In this paper, we investigate the number of limit cycles for a class of discontinuous planar differential systems with multiple sectors separated by many rays originating from the origin. In each sector, it is a smooth generalized Liénard polynomial differential system x′ = −y + g1(x) + f1(x)y and y′ = x + g2(x) + f2(x)y, where fi(x) and gi(x) for i = 1, 2 are polynomials of variable x with any...

متن کامل

On the Number of Limit cycles for a Generalization of LiéNard Polynomial differential Systems

where g1(x) = εg11(x)+ε g12(x)+ε g13(x), g2(x) = εg21(x) + ε g22(x) + ε g23(x) and f(x) = εf1(x) + εf2(x) + ε f3(x) where g1i, g2i, f2i have degree k, m and n respectively for each i = 1, 2, 3, and ε is a small parameter. Note that when g1(x) = 0 we obtain the generalized Liénard polynomial differential systems. We provide an upper bound of the maximum number of limit cycles that the previous d...

متن کامل

On the Limit Cycles of the Polynomial Differential Systems with a Linear Node and Homogeneous Nonlinearities

We consider the class of polynomial differential equations ẋ = λx + Pn(x, y), ẏ = μy + Qn(x, y) in R where Pn(x, y) and Qn(x, y) are homogeneous polynomials of degree n > 1 and λ 6= μ, i.e. the class of polynomial differential systems with a linear node with different eigenvalues and homogeneous nonlinearities. For this class of polynomial differential equations we study the existence and non–e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 2018

ISSN: 0013-0915,1464-3839

DOI: 10.1017/s0013091517000244